

Getting started
with

IVI and Python
Your Guide to Using IVI-Drivers

with Python

Version 1.0

© Copyright IVI Foundation, 2020
All rights reserved

The IVI Foundation has full copyright privileges of all versions of the IVI Getting

Started Guide. For persons wishing to reference portions of the guide in their own

written work, standard copyright protection and usage applies. This includes

providing a reference to the guide within the written work. Likewise, it needs to be

apparent what content was taken from the guide. A recommended method in which

to do this is by using a different font in italics to signify the copyrighted material.

Contents
• • •

Chapter 1 Introduction .. 5

Purpose .. 5

Why Use Python with an IVI Driver? ... 5

Why Use an Instrument Driver? .. 5

Why IVI? ... 6

Why Use an IVI Driver? .. 8

Flavors of IVI Drivers .. 8

Shared Components ... 9

Download and Install IVI Drivers... 9

Familiarizing Yourself with the Driver ... 9

Examples .. 10

Chapter 2 Using IVI-C with Python ... 12

The Environment .. 12

Example Requirements .. 12

Download and Install the Driver (prerequisites) .. 12

Defining VISA Types as ctypes .. 12

Load the tktds1k2k DLL into Memory ... 13

Initialize the Instrument ... 13

Configure the Instrument .. 14

Acquire the Measurement Waveform ... 14

Display the Acquired Waveform ... 15

Add Error Handling ... 16

Close the Instrument Session ... 17

Further Information ... 17

Chapter 3 Using IVI-COM with Python .. 18

The Environment .. 18

Example Requirements .. 18

Download and Install the Driver (prerequisites) .. 18

comtypes, Packages and Functions ... 18

Load the IviSope interface from the TekSeriesScope IVI-COM Driver 19

Initialize the Instrument driver ... 19

Configure the Instrument .. 19

Acquire the Measurement Waveform ... 19

Display the Acquired Waveform ... 20

Add Error Handling ... 21

Close the Instrument driver connection .. 21

Further Information ... 21

Note: ... 21

5

Chapter 1
Introduction
• • •

Purpose
Welcome to Getting Started with IVI and Python. This guide introduces key

concepts about IVI drivers and shows you how to create a short program to

perform a measurement. The guide is part of the IVI Foundation’s series of

guides, IVI Getting Started Guides.

IVI Getting Started Guides are intended for individuals who write and run

programs to control test-and-measurement instruments. Each guide focuses

on a different programming environment. As you develop test programs,

you face decisions about how you communicate with the instruments.

Some of your choices include Direct I/O, VXIplug&play drivers, or IVI

drivers. If you are new to using IVI drivers or just want a quick refresher on

the basics, IVI Getting Started Guides can help.

IVI Getting Started Guides shows that IVI drivers can be straightforward,

easy-to-use tools. IVI drivers provide a number of advantages that can save

time and money during development, while improving performance as well.

Whether you are starting a new program or making improvements to an

existing one, you should consider the use of IVI drivers to develop your test

programs.

So, consider this the “hello, instrument” guide for IVI drivers. If you recall,

the “hello world” program, which originally appeared in Programming in C: A

Tutorial, simply prints out “hello, world.” The “hello, instrument” program

performs a simple measurement on a simulated instrument and returns the

result. We think you’ll find that far more useful.

Why Use Python with an IVI Driver?
Python is a rising star in the programming world. Major T&M companies

have added Python support everywhere. Python is an important tool that

customers want to use. There is strong third-party support: Google and

Microsoft, for example. And support from the Python community is

outstanding.

Python is a multi-paradigm programming language. Object-oriented

programming and structured programming are fully supported, and many of

its features support functional programming and aspect-oriented

programming. 

And now, with this getting started guide, you will be able to add the benefits

of IVI drivers to your Python ATE applications.

Why Use an Instrument Driver?
To understand the benefits of IVI drivers, we need to start by defining

instrument drivers in general and describing why they are useful. An

instrument driver is a set of software routines that controls a programmable

instrument. Each routine corresponds to a programmatic operation, such as

configuring, writing to, reading from, and triggering the instrument.

Instrument drivers simplify instrument control and reduce test program

6

development time by eliminating the need to learn the programming protocol

for each instrument.

Starting in the 1970s, programmers used device-dependent commands for

computer control of instruments. But lack of standardization meant even two

digital multimeters from the same manufacturer might not use the same

commands. In the early 1990s a group of instrument manufacturers

developed Standard Commands for Programmable Instrumentation (SCPI).

This defined set of commands for controlling instruments uses ASCII

characters, providing some basic standardization and consistency to the

commands used to control instruments. For example, when you want to

measure a DC voltage, the standard SCPI command is

“MEASURE:VOLTAGE:DC?”.

In 1993, the VXIplug&play Systems Alliance created specifications for

instrument drivers called VXIplug&play drivers. Unlike SCPI, VXIplug&play

drivers do not specify how to control specific instruments; instead, they

specify some common aspects of an instrument driver. By using a driver,

you can access the instrument by calling a subroutine in your programming

language instead of having to format and send an ASCII string as you do

with SCPI. With ASCII, you have to create and send the instrument the

syntax “MEASURE:VOLTAGE:DC?”, then read back a string, and build it

into a variable. With a driver you can merely call a function called

MeasureDCVoltage() and pass it a variable to return the measured voltage.

Although you still need to be syntactically correct in your calls to the

instrument driver, making calls to a subroutine in your programming language

is less error prone. If you have been programming to instruments without a

driver, then you are probably all too familiar with hunting around the

programming guide to find the right SCPI command and exact syntax. You

also have to deal with an I/O library to format and send the strings, and then

build the response string into a variable.

Why IVI?

The VXIplug&play drivers do not provide a common programming interface.

That means programming a Keithley DMM using VXIplug&play still differs

from programming a Keysight DMM. For example, the instrument driver

interface for one may be ke2000_read while another may be ag34401_get or

something even farther afield. Without consistency across instruments

manufactured by different vendors, many programmers still spent a lot of time

learning each individual driver.

To carry VXIplug&play drivers a step (or two) further, in 1998 a group of end

users, instrument vendors, software vendors, system suppliers, and system

integrators joined together to form a consortium called the Interchangeable

Virtual Instruments (IVI) Foundation. If you look at the membership, it’s clear

that many of the foundation members are competitors. But all agreed on the

need to promote specifications for programming test instruments that provide

better performance, reduce the cost of program development and

maintenance, and simplify interchangeability.

For example, for any IVI driver developed for a DMM, the measurement

command is IviDmmMeasurement.Read, regardless of the vendor. Once you

learn how to program the commands specified by IVI for the instrument class,

you can use any vendor’s instrument and not need to relearn the commands.

7

Also commands that are common to all drivers, such as Initialize and Close,

are identical regardless of the type of instrument. This commonality lets you

spend less time browsing through the help files in order to program an

instrument, leaving more time to get your job done.

That was the motivation behind the development of IVI drivers. The IVI

specifications enable drivers with a consistent and high standard of quality,

usability, and completeness. The specifications define an open driver

architecture, a set of instrument classes, and shared software components.

Together these provide consistency and ease of use, as well as the crucial

elements needed for the advanced features IVI drivers support: instrument

simulation, automatic range checking, state caching, and interchangeability.

The IVI Foundation has created IVI class specifications that define the

capabilities for drivers for the following thirteen instrument classes:

Digital multimeter (DMM) IviDmm

Oscilloscope IviScope

Arbitrary waveform/function generator IviFgen

DC power supply IviDCPwr

AC power supply IviACPwr

Switch IviSwtch

Power meter IviPwrMeter

Spectrum analyzer IviSpecAn

RF signal generator IviRFSigGen

Upconverter IviUpconverter

Downconverter IviDownconverter

Digitizer IviDigitizer

Counter/timer IviCounter

IVI Class Compliant drivers usually also include numerous functions that are

beyond the scope of the class definition. This may be because the capability

is not common to all instruments of the class or because the instrument

offers some control that is more refined than what the class defines.

IVI also defines custom drivers. Custom drivers are used for instruments that

are not members of a class. For example, there is not a class definition for

network analyzers, so a network analyzer driver must be a custom driver.

Custom drivers provide the same consistency and benefits described below

for an IVI driver, except interchangeability.

IVI drivers that conform to the IVI specifications are permitted to display the

IVI- Conformant logo.

Class IVI Driver

8

Why Use an IVI Driver?

Why choose IVI drivers over other possibilities? Because IVI drivers can

increase performance and flexibility for more intricate test applications. Here

are a few of the benefits:

Consistency – IVI drivers all follow a common model of how to control the

instrument. That saves you time when you need to use a new instrument.

Ease of use – IVI drivers feature enhanced ease of use in popular Application

Development Environments (ADEs). The APIs provide fast, intuitive access to

functions. IVI drivers use technology that naturally integrates in many different

software environments.

Quality – IVI drivers focus on common commands, desirable options, and
rigorous testing to ensure driver quality.

Simulation – IVI drivers allow code development and testing even when an

instrument is unavailable. That reduces the need for scarce hardware

resources and simplifies test of measurement applications. The example

programs in this document use this feature.

Range checking – IVI drivers ensure the parameters you use are within
appropriate ranges for an instrument.

State caching – IVI drivers keep track of an instrument’s status so that I/O is

only performed when necessary, preventing redundant configuration

commands from being sent. This can significantly improve test system

performance.

Interchangeability – IVI class compliant drivers also enable exchange of

instruments with minimal code changes, reducing the time and effort needed

to integrate measurement devices into new or existing systems. The IVI class

specifications provide syntactic interchangeability but may not provide

behavioral interchangeability. In other words, the program may run on two

different instruments, but the results may not be the same due to differences in

the way the instrument itself functions.

Flavors of IVI Drivers

To support all popular programming languages and development

environments, IVI drivers provide either an IVI-C or IVI-COM (Component

Object Model) API. Driver developers may provide either or both interfaces, as

well as wrapper interfaces optimized for specific development environments.

Although the functionality is the same, IVI-C drivers are optimized for use in

ANSI C development environments; IVI-COM drivers are optimized for

environments that support the Component Object Model (COM) such as the

.NET programming environment. IVI-C drivers extend the VXIplug&play driver

specification and their usage is similar. IVI-COM drivers provide easy access

to instrument functionality through methods and properties.

The getting started examples communicate with the instruments using the

Virtual Instrument Software Architecture (VISA) I/O library, a widely used

standard library for communicating with instruments from a personal

9

computer. The VISA standard is also provided by the IVI Foundation.

Shared Components

To make it easier to combine drivers and other software from various

vendors, the IVI Foundation members have cooperated to provide common

software components, called IVI Shared Components. These components

provide services to drivers and driver clients that need to be common to all

drivers. For instance, the IVI Configuration Server enables administration of

system-wide configuration.

Important! You must install the IVI Shared Components before an IVI driver

can be installed.

The IVI Shared Components can be downloaded from vendors’ web sites as
well as from the IVI Foundation Web site.

To download and install shared components from the IVI Foundation Web site:

1 Go to the IVI Foundation Web site at http://www.ivifoundation.org.

2 Locate the Shared Components page.

3 Choose the IVI Shared Components msi file for the Microsoft Windows

Installer package or the IVI Shared Components exe for the

executable installer.

Download and Install IVI Drivers

After you’ve installed Shared Components, you’re ready to download and

install an IVI driver. For most ADEs, the steps to download and install an IVI

driver are identical. For the few that require a different process, the relevant

IVI Getting Started Guides guide provides the information you need. IVI

Drivers are available from the hardware or software vendors’ web site or by

linking to them from the IVI Foundation web site.

The IVI Foundation requires that compliant drivers be registered before the

display the IVI conformant logo. To see the list of drivers registered with the

IVI Foundation, go to the registration section of the IVI web site at

http://www.ivifoundation.org.

Familiarizing Yourself with the Driver

Although the examples in IVI Getting Started Guides use a DMM driver, you

will likely employ a variety of IVI drivers to develop test programs. To

jumpstart that task, you’ll want to familiarize yourself quickly with drivers you

haven’t used before. Most ADEs provide a way to explore IVI drivers to learn

their functionality. In each IVI guide, where applicable, we add a note

explaining how to view the available functions. In addition, browsing an IVI

driver’s help file often proves an excellent way to learn its functionality.

10

Examples

As we noted above, each guide in the IVI Getting Started Guides series

shows you how to use an IVI driver to write and run a program that performs

a simple measurement on a simulated instrument and returns the result. The

examples demonstrate common steps using IVI drivers. Where practical,

every example includes the steps listed below:

• Download and Install the IVI driver– covered in the Download and
Install IVI Drivers section above.

• Determine the VISA address string – Examples in IVI Getting Started
Guides use the simulate mode, so we chose the address string
GPIB0::23::INSTR, often shown as GPIB::23. If you need to
determine the VISA address string for your instrument and the ADE
does not provide it automatically, use an IO application, such as
National Instruments Measurement and Automation Explorer (MAX)
or Keysight Connection Expert.

• Reference the driver or load driver files – For the examples in this
guide, the driver is the IVI-COM/IVI-C Version 1.3.0.0 for 34401A,
March 2015 (from Keysight Technologies) … or the Keysight 34401A
IVI-C driver, Version 4.5, January 2015 (from National Instruments).

• Create an instance of the driver in ADEs that use COM – For the
examples in the IVI guides, the driver is the Agilent 34401A (IVI-
COM) or HP 34401 (IVI-C).

• Write the program. The programs in this series all perform the following
steps:

• Initialize the instrument – Initialize is required when using any
IVI driver. Initialize establishes a communication link with the
instrument and must be called before the program can do
anything with the instrument. The examples set reset to true,
ID query to false, and simulate to true.

Setting reset to true tells the driver to initially reset the
instrument. Setting the ID query to false prevents the driver from
verifying that the connected instrument is the one the driver was
written for. Finally, setting simulate to true tells the driver that it
should not attempt to connect to a physical instrument, but use
a simulation of the instrument.

• Configure the instrument – The examples set a range of 1.5
volts and a resolution of

0.001 volts (1 millivolt).

• Access an instrument property – The examples set the
trigger delay to 0.01 seconds.

• Set the reading timeout – The examples set the
reading timeout to 1000 milliseconds (1
second).

• Take a reading

• Close the instrument – This step is required when using any IVI
driver, unless the ADE explicitly does not require it. We close the
session to free resources.

Important! Close may be the most commonly missed
step when using an IVI driver. Failing to do this could
mean that system resources are not freed up and your
program may behave unexpectedly on subsequent
executions.

11

• Check the driver for any errors.

• Display the reading.

Note: Examples that use a console application do not show the display.

Now that you understand the logic behind IVI drivers, let’s see how to get started.

12

Chapter 2
Using IVI-C with Python
• • •

The Environment

Python is an open source programming language developed by the Python

Software Foundation. It is interpreted and fully object-oriented with a focus on

readability and efficient development. Python is used across a wide variety of

applications and features a robust set of third-party modules. This chapter

provides detailed instructions on how to call an IVI-C specific driver using

Python.

Example Requirements

• Python 2.7 or Python 3.6+

• Matplotlib 2.2.3 for Python 2.7 or 3.0.1 for Python 3.6+

• Tektronix tktds1k2k IVI-C driver, Version 3.7, October 2015 (from National

Instruments)

Download and Install the Driver (prerequisites)

If you have not already installed the driver, go to the NI Instrument Driver

website and follow the instructions to download and install it. You can also

refer to Chapter 1, Download and Install IVI Drivers, for instructions.

This example uses an IVI-C driver. Base Python installs include ctypes, a

function library for interfacing with C DLLs.

Defining VISA Types as ctypes

To help with translating function calls from the tktds1k2k driver, you can

first create ctype aliases for commonly used VISA types.

1. Create a new Python source file named visatype.py.
2. Import the ctypes library.
3. Declare type aliases for primitive types defined in visatype.h in

equivalent ctypes.
-*- coding: utf-8 -*-
import ctypes

ViChar = ctypes.c_char
ViInt8 = ctypes.c_int8
ViInt16 = ctypes.c_int16
ViUInt16 = ctypes.c_uint16
ViInt32 = ctypes.c_int32
ViUInt32 = ctypes.c_uint32
ViInt64 = ctypes.c_int64
ViString = ctypes.c_char_p
ViReal32 = ctypes.c_float
ViReal64 = ctypes.c_double

Types that are based on other visatypes
ViBoolean = ViUInt16
VI_TRUE = ViBoolean(True)
VI_FALSE = ViBoolean(False)
ViStatus = ViInt32

13

ViSession = ViUInt32
ViAttr = ViUInt32
ViConstString = ViString
ViRsrc = ViString

Load the tktds1k2k DLL into Memory
To load the tktds1k2k DLL into memory for use in Python, first
import ctypes and the visatype library that you recently created.

import ctypes
from visatype import *

Now you can call the ctypes.cdll.LoadLibrary method with a path to the
location on disk where the IVI driver C DLL is installed. This example is
designed for use with 64-bit Python so it uses the path to the 64-bit driver C
DLL.

#load tktds1k2k DLL into memory
tkDLL = ctypes.cdll.LoadLibrary(r'C:\Program Files\IVI
Foundation\IVI\Bin\tktds1k2k_64.dll')

Python stores a reference to the C DLL in the specified variable, tkDLL. The
path string literal is prefixed with ‘r’ to indicate this is a raw string, treating the
backslashes as literal characters. You are now able to call functions from the
tktds1k2k driver as methods on the reference to the driver DLL.

Initialize the Instrument
Before calling the initialization and configuration methods of the driver, begin
by declaring the variables you will need to pass into the function calls such as
the session handle, the resource name, the option string, and any other pieces
of data relevant to your application.

1. Create a session variable and set it to an instance

of a ViSession object.
session = ViSession()

2. Define the resource name, option string, and channel string. To allocate

string variables for passing into functions, call ctypes the method
create_string_buffer(). If using string literals, you need to set the
OS encoding as well.

resourceName = ctypes.create_string_buffer('1001C'.encode('wi
ndows-1251'))

optionString = ctypes.create_string_buffer('Simulate=1,Range
Check=1,QueryInstrStatus=0,Cache=1'.encode('windows-1251'))
channel = ctypes.create_string_buffer('CH1'.encode('windows-
1251'))

3. Make a call to the initialization function in the tktds1k2k DLL. Because

the session is returned as an output parameter from
tktds1k2k_InitWithOptions, you need to pass a pointer to the
session variable into the method. ctypes provides the method

pointer() to pass variables to C DLLs as pointers.

tkDLL.tktds1k2k_InitWithOptions(resourceName, VI_TRUE,
VI_TRUE, optionString, ctypes.pointer(session))

14

Configure the Instrument
Now that the instrument is initialized, the configuration methods can be called
utilizing the session variable as a reference to the current instrument session.

1. For ease of use and readability, define the constants needed for the
configuration functions being used. Set the constants to their matching
values in the tktds1k2k header file, wrapped in constructors of the type

aliases defined in visatype.py.

constants to be used by tktds1k2k driver
TKTDS1K2K_VAL_NORMAL = ViInt32(0)
TKTDS1K2K_VAL_DC = ViInt32(1)
TKTDS1K2K_VAL_EDGE_TRIGGER = ViInt32(1)
TKTDS1K2K_VAL_EDGE_TRIGGER = ViInt32(1)
TKTDS1K2K_VAL_MATH_FFT_CH1 = ViInt32(6)
TKTDS1K2K_VAL_POSITIVE = ViInt32(1)

2. Make calls to the necessary configuration functions. The first parameter
is always the session handle variable. Any additional static data should
be wrapped in constructors for the matching types in visatype.py to
ensure data is being properly passed to the functions.

tkDLL.tktds1k2k_ConfigureAcquisitionType(session,
TKTDS1K2K_VAL_NORMAL)
tkDLL.tktds1k2k_ConfigureChannel(session,
channel, ViReal64(1.0), ViReal64(0),
TKTDS1K2K_VAL_DC, ViReal64(1.0), VI_TRUE)
tkDLL.tktds1k2k_ConfigureChanCharacteristics(session,
channel, ViReal64(1.0e6), ViReal64(20.0e6))
tkDLL.tktds1k2k_ConfigureAcquisitionRecord(session, ViReal64(
0.01), ViInt32(2500), ViReal64(-0.005))
tkDLL.tktds1k2k_ConfigureTrigger(session,
TKTDS1K2K_VAL_EDGE_TRIGGER, ViReal64(500e-9))
tkDLL.tktds1k2k_ConfigureMathChannel(session,
TKTDS1K2K_VAL_MATH_FFT_CH1)
tkDLL.tktds1k2k_ConfigureMathFFT(session, ViInt32(50), ViInt3
2(1), ViInt32(0), ViReal64(1))
tkDLL.tktds1k2k_ConfigureEdgeTriggerSource(session,
channel, ViReal64(0.4), TKTDS1K2K_VAL_POSITIVE)
tkDLL.tktds1k2k_ConfigureTriggerCoupling(session,
TKTDS1K2K_VAL_DC)

Acquire the Measurement Waveform
To handle arrays of data using ctypes, you must first know the size of the array
you want to allocate.

1. Create variables to store the outputs of the waveform read function.

actualRecordLength = ViInt32()
actualPts = ViInt32()
initialX = ViReal64()
incrementX = ViReal64()

2. Acquire the actual number of data points from the read function.

tkDLL.tktds1k2k_ActualRecordLength(session, ctypes.pointer(a
ctualRecordLength))

15

3. To create an array for use with ctypes, you must first create a new type

on the fly by using the base type, the multiplication operator, and the
size of the array. The constructor can then be called to allocate

a ctypes array variable in Python.

waveform = (ViReal64 * actualRecordLength.value)()

4. Finally, call the waveform read function, passing in the output variables

as pointers.

tkDLL.tktds1k2k_ReadWaveform(session, channel,
actualRecordLength, ViReal64(10000.0), ctypes.pointer(wavefo
rm), ctypes.pointer(actualPts), ctypes.pointer(initialX), ct
ypes.pointer(incrementX))

Display the Acquired Waveform
This example uses Matplotlib, a popular third-party scientific graphing solution,
to display the acquired waveform.

1. Import the pyplot class as an object.

import matplotlib.pyplot as plt

2. Configure the plot, pass in the acquired waveform, and display the

plot.

if actualRecordLength.value !=0:
plt.figure(0).canvas.set_window_title('Acquired

Waveform')
plt.plot(list(waveform))
plt.show()

You should see the acquired waveform in a pop-up window:

16

Add Error Handling
To add Pythonic error handling, you need to create a function that takes the
return value of the tktds1k2k DLL functions and throws an exception in the
case of an error. This allows you to use a try/except block to handle errors.

1. Define a new exception class that extends the Python Exception base

class and minimally stores an error code.

class ErrorCodeException(Exception):

def __init__(self, error_code):
self.code = error_code

2. Now that you have an exception defined, build an error check function

that checks the return value of the DLL calls and throws an instance of
your exception class when an error occurs. Any non-zero code
indicates an error occurred.

def checkErr(error_code):
if error_code != 0:

raise ErrorCodeException(error_code)

3. Wrap all calls to the tktds1k2k DLL inside of the errCheck function:

checkErr(tkDLL.tktds1k2k_InitWithOptions(resourceName,
VI_TRUE, VI_TRUE, optionString, ctypes.pointer(session)))
checkErr(tkDLL.tktds1k2k_ConfigureAcquisitionType(session,
TKTDS1K2K_VAL_NORMAL))
...

4. Add the main body of your application, from instrument initialization to

the acquisition and displaying of data, to a try/except block.

try:
checkErr(tkDLL.tktds1k2k_InitWithOptions(resourceName,
VI_TRUE, VI_TRUE, optionString, ctypes.pointer(session)))
checkErr(tkDLL.tktds1k2k_ConfigureAcquisitionType(session,
TKTDS1K2K_VAL_NORMAL))
...

plt.plot(list(waveform))
plt.show()
except ErrorCodeException as err:

5. In the except portion, call the function to get an error message from the
error code stored in the exception and display the exception to the

user.

except ErrorCodeException as err:
error_message = ctypes.create_string_buffer('\000'.encode('w
indows-1251'), 256)
tkDLL.tktds1k2k_error_message(session, ViStatus(err.code), e
rror_message)
print('Error ' + str(err.code) + ':
' + error_message.value.decode('windows-1251'))

17

Close the Instrument Session
Now that you’ve finished with the main body of the application, call the close
method on the session variable, checking first that the session is not null.

if session.value != 0:
 tkDLL.tktds1k2k_close(session)

Further Information
 Learn more about Python at https://www.python.org/about/
 Learn more about ctypes at https://docs.python.org/3/library/ctypes.html

18

Chapter 3
Using IVI-COM with Python
• • •

The Environment

Python is an open source programming language developed by the Python

Software Foundation. It is interpreted and fully object-oriented with a focus on

readability and efficient development. Python is used across a wide variety of

applications and features a robust set of third-party modules. This chapter

provides detailed instructions on how to call an IVI-COM specific driver using

Python.

Example Requirements

• Python 2.7 or Python 3.6+

• Pure Python COM package (https://pypi.python.org/pypi/comtypes)

• Matplotlib 2.2.3 for Python 2.7 or 3.0.1 for Python 3.6+

• TekSeriesScope IVI-COM Driver for 4, 5 and 6 Series Mixed Signal

Oscilloscopes. V1.6.0, developed by Tektronix.

Download and Install the Driver (prerequisites)

If you have not already installed the driver, go to the IVI foundation Driver

Registry website and find the above driver to download and install it. You can

also refer to the driver readme file for instructions to Install the IVI COM Driver.

This example uses an IVI-COM driver. By default, the base Python does not

install comtypes Python package. Please install the above package which is

required for COM driver APIs to be called from Python.

This guide also provide example to fetch waveform data from the Oscilloscope

and display it using a plot. Install the Matplotlib Python package to plot the

waveform data.

comtypes, Packages and Functions

The comtypes package, is a pure Python COM package. The comptype

package makes it easy to access and implement both custom and dispatch-

based COM interfaces.

The comtypes.client package implements the high-level comtype functionality.

We will be using CreateObject function for creating an object of the IVI driver.

CreateObject(progid, clsctx=None, machine=None, interface=None,

dynamic=False, pServerInfo=None)

Create a COM object and return an interface pointer to it.

19

Load the IviSope interface from the TekSeriesScope IVI-COM Driver
GetModule('IviScopeTypeLib.dll')
from comtypes.gen import IviScopeLib

Initialize the Instrument driver
Before calling the initialization and configuration methods of the driver, lets create
a driver object first.

1. Create a driver object.
ivi_scope = CreateObject('TekSeriesScope.TekSeriesScope',in
terface=IviScopeLib.IIviScope)

2. Make a call to the initialization function now. Pass the VISA resource
string and other required parameters.
ivi_scope.Initialize('USB::0x0699::0x0522::C011595::INSTR',
False, False, '')

Configure the Instrument
Now that the instrument is initialized, the configuration methods can be
called using the ivi_scope driver object.

1. Access the driver’s Identity interface and get the instrument model. This
shows how to access any driver property.
scope_model = ivi_scope.Identity.InstrumentModel

2. Access the driver’s Acquisition interface and get the current record
length.
rec_len = ivi_scope.Acquisition.RecordLength

3. Configure the Horizontal parameters, if required.
ivi_scope.Acquisition.ConfigureRecord(TimePerRecord=.1, Min
NumPts=10000, AcquisitionStartTime=0)

4. Access to the Channel interface and configure its parameters.
ch1 = ivi_scope.Channels.Item('Channel1')
ch1.Configure(Range=.1, Offset=0.1,
Coupling=IviScopeLib.IviScopeVerticalCouplingDC, ProbeAtten
uation=1, Enabled=True)

Acquire the Measurement Waveform
To get the waveform data from any channel of the Oscilloscope, we have to call
some of the IVI Scope class defined functions like ReadWaveform or
FetchWaveform. These functions are available in IviMeasurement interface of
Measurements repeated capabilities group.

1. Get the access to the respective Measurement interface for the Channel.
meas1 = ivi_scope.Measurements.Item('Channel1')

2. Call the FetchWaveform function on the above Measurement
interface. FetchWaveform returns a tuple that
contains WaveformArray as an array of double, InitialX and XIncrement.
waveform = meas1.FetchWaveform()
#print ("Waveform Array:", waveform[0])
waveform[0] contains the Waveform data, which we will
plot in the next section
waveform[1] and waveform[2] contains
the InitialX and XIncrement respectively
print ("InitialX :", waveform[1])
print ("XIncrement :", waveform[2])

20

Display the Acquired Waveform
This example uses Matplotlib, a popular third-party scientific graphing solution, to
display the acquired waveform.

1. Import the pyplot class as an object.
import matplotlib.pyplot as plt

2. Configure the plot, pass in the acquired waveform, and display the plot.

plt.figure(0).canvas.set_window_title('Acquired Waveform')
plt.plot(waveform[0])
plt.show()

You should see the acquired waveform in a pop-up window:

21

Add Error Handling
For the comtypes, the error handling is very much simplified using the “try/except”
statements.
If the COM method call fails, a COMError exception is raised, containing
the HRESULT value and the error message details also.
The following example shows, how to handle errors in your Python code for the
IVI COM driver calls.

from comtypes.client import CreateObject, GetModule
import comtypes

GetModule('IviScopeTypeLib.dll')
from comtypes.gen import IviScopeLib
ivi_scope = CreateObject('TekSeriesScope.TekSeriesScope',
interface=IviScopeLib.IIviScope)
try:
 ivi_scope.Initialize('USB::0x0699::0x0522::C011595::INSTR',
False, False, '')
except comtypes.COMError as ce:
 #Get the Error details as a tuples
 com_error = ce.args
 #Get the HRESULT value
 hresult = com_error[0]
 #Get the Error messages details
 error_messages = com_error[2]

Close the Instrument driver connection
Now that you’ve finished with the main body of the application, call the Close
method on the driver object.
ivi_scope.Close()

Further Information
 Learn more about Python at https://www.python.org/about/

 Learn more about comtypes at https://pythonhosted.org/comtypes/

 IVI Foundation: http://ivifoundation.org/

Note:
The example code provided in this document was tested with

 Python 3.7 (32-bit versions)

 TekSeriesScope IVI-COM Driver ver 1.6.0

 TekVISA version 4.2.0.16

